
Jarrar © 2018 1

Mustafa Jarrar: Lecture Notes on Artificial Intelligence
Birzeit University, 2018

Mustafa Jarrar
University of Birzeit

Chapter 3
Informed Searching

http://www.birzeit.edu/

Jarrar © 2018 2

More Online Courses at: http://www.jarrar.info
Course Page: http://www.jarrar.info/courses/AI/

Watch this lecture
and download the slides

Acknowledgement:
This lecture is based on (but not limited to) chapter 4 in “S. Russell and P. Norvig: Artificial Intelligence:
A Modern Approach”.

http://www.jarrar.info/
http://www.jarrar.info/courses/AI/

Jarrar © 2014 3

Discussion and Motivation

How to determine the minimum number of coins to give while
making change?

è The coin of the highest value first ?

Jarrar © 2014 4

Discussion and Motivation

Travel Salesperson Problem

• Any idea how to improve this type of search?
• What type of information we may use to improve our search?
• Do you think this idea is useful: (At each stage visit the unvisited city

nearest to the current city)?

Given a list of cities and their pair wise distances, the task is to find a
shortest possible tour that visits each city exactly once.

Jarrar © 2014 5

Best-first search
Idea: use an evaluation function f(n) for each node

– family of search methods with various evaluation functions
(estimate of "desirability“)

– usually gives an estimate of the distance to the goal
– often referred to as heuristics in this context
àExpand most desirable unexpanded node.
àA heuristic function ranks alternatives at each branching step

based on the available information (heuristically) in order to
make a decision about which branch to follow during a search.

Implementation:
Order the nodes in fringe in decreasing order of desirability.
Special cases:

– greedy best-first search
– A* search

Jarrar © 2014 6

Romania with step costs in km

Suppose we can have this info (SLD)
è How can we use it to improve our search?

Jarrar © 2014 7

Greedy best-first search

• Greedy best-first search expands the node that appears

to be closest to goal.

• Estimate of cost from n to goal ,e.g., hSLD(n) = straight-line

distance from n to Bucharest.

Utilizes a heuristic function as evaluation function

– f(n) = h(n) = estimated cost from the current node to a

goal.

– Heuristic functions are problem-specific.

– Often straight-line distance for route-finding and similar

problems.

– Often better than depth-first, although worst-time

complexities are equal or worse (space).

Jarrar © 2014 8

Greedy best-first search example Example from [1]

Jarrar © 2014 9

Greedy best-first search example

Jarrar © 2014 10

Greedy best-first search example

Jarrar © 2014 11

Greedy best-first search example

Jarrar © 2014 12

Greedy best-first search

Jarrar © 2014 13

Properties of greedy best-first search

Complete: No – can get stuck in loops (e.g., Iasi à Neamt à Iasi à
Neamt à ….)

Time: O(bm), but a good heuristic can give significant improvement

Space: O(bm) -- keeps all nodes in memory

Optimal: No

b branching factor

m maximum depth of the
search tree

Jarrar © 2014 14

Discussion

Do you think hSLD(n) is admissible?
Would you use hSLD(n) in Palestine? How? Why?

Did you find the Greedy idea useful?

èIdeas to improve it?

Jarrar © 2014 15

A* search
Idea: avoid expanding paths that are already expensive.

Evaluation function = path cost + estimated cost
to the goal

f(n) = g(n) + h(n)
-g(n) = cost so far to reach n
-h(n) = estimated cost from n to goal

-f(n) = estimated total cost of path through n to goal

Combines greedy and uniform-cost search to find the
(estimated) cheapest path through the current node

– Heuristics must be admissible

• Never overestimate the cost to reach the goal

– Very good search method, but with complexity problems

Jarrar © 2014 16

A* search example Example from [1]

Jarrar © 2014 17

A* search example

Jarrar © 2014 18

A* search example

Jarrar © 2014 19

A* search example

Jarrar © 2014 20

A* search example

Jarrar © 2014 21

A* search example

Jarrar © 2014 22

A* Algorithm

Jarrar © 2014 23

A* Exercise

How will A* get from Iasi to Fagaras?

Jarrar © 2014 24

A* Exercise

Node Coordinates SL Distance
A (5,9) 8.0
B (3,8) 7.3
C (8,8) 7.6
D (5,7) 6.0
E (7,6) 5.4
F (4,5) 4.1
G (6,5) 4.1
H (3,3) 2.8
I (5,3) 2.0
J (7,2) 2.2
K (5,1) 0.0

Jarrar © 2014 25

Solution to A* Exercise

Node Coordinates SL Distance
A (5,9) 8.0
B (3,8) 7.3
C (8,8) 7.6
D (5,7) 6.0
E (7,6) 5.4
F (4,5) 4.1
G (6,5) 4.1
H (3,3) 2.8
I (5,3) 2.0
J (7,2) 2.2
K (5,1) 0.0

Jarrar © 2014 26

Greedy Best-First Exercise

Node Coordinates Distance
A (5,9) 8.0
B (3,8) 7.3
C (8,8) 7.6
D (5,7) 6.0
E (7,6) 5.4
F (4,5) 4.1
G (6,5) 4.1
H (3,3) 2.8
I (5,3) 2.0
J (7,2) 2.2
K (5,1) 0.0

Jarrar © 2014 27

Solution to Greedy Best-First Exercise

Node Coordinates Distance
A (5,9) 8.0
B (3,8) 7.3
C (8,8) 7.6
D (5,7) 6.0
E (7,6) 5.4
F (4,5) 4.1
G (6,5) 4.1
H (3,3) 2.8
I (5,3) 2.0
J (7,2) 2.2
K (5,1) 0.0

Jarrar © 2014 28

Another Exercise

Node C g(n) h(n)

A (5,10) 0.0 8.0
B (3,8) 2.8 6.3
C (7,8) 2.8 6.3
D (2,6) 5.0 5.0
E (5,6) 5.6 4.0
F (6,7) 4.2 5.1
G (8,6) 5.0 5.0
H (1,4) 7.2 4.5
I (3,4) 7.2 2.8
J (7,3) 8.1 2.2
K (8,4) 7.0 3.6
L (5,2) 9.6 0.0

Do 1) A* Search and 2) Greedy Best-Fit Search

Jarrar © 2014 29

Admissible Heuristics

A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n),
where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach
the goal, i.e., it is optimistic.

The heuristic function hSLD(n) is admissible because it never
overestimates the actual road distance)

Theorem-1: If h(n) is admissible, A* using TREE-SEARCH is
optimal.

Based on [4]

Jarrar © 2014 30

Optimality of A* (proof)

f(G2) = g(G2) since h(G2) = 0
g(G2) > g(G) since G2 is suboptimal
f(G) = g(G) since h(G) = 0

Then f(G2) > f(G) from above

h(n) ≤ h*(n) since h is admissible
g(n) + h(n) ≤ g(n) + h*(n)

Then f(n) ≤ f(G)
Thus, A* will never select G2 for expansion

Based on [4]

Recall that f(n) = g(n) + h(n)
Now, suppose some suboptimal goal G2 has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that n is on a
shortest path to an optimal goal G.
We want to prove:
f(n) < f(G2)

(then A* will prefer n over G2)

Start

n

G G2

Jarrar © 2014 31

Optimality of A* (proof)

In other words:

f(G
2
) = g(G

2
) + h(G

2
) = g(G

2
) > C*,

since G
2

is a goal on a non-optimal path (C* is the optimal cost)

f(n) = g(n) + h(n) ≤ C*, since h is admissible

f(n) ≤ C* < f(G
2
), so G

2
will never be expanded

à A* will not expand goals on sub-optimal paths

Recall that f(n) = g(n) + h(n)
Now, suppose some suboptimal goal G2 has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that n is on a

shortest path to an optimal goal G.

We want to prove:
f(n) < f(G2)

(then A* will prefer n over G2)

Start

n

G G2

Jarrar © 2014 32

Properties of A*

• Complete: Yes
unless there are infinitely many nodes with f ≤ f(G)

• Time: Exponential
because all nodes such that f(n) ≤ C* are expanded!

• Space: Keeps all nodes in memory
fringe is exponentially large

• Optimal: Yes

Jarrar © 2014 33

Memory Bounded Heuristic Search

How can we solve the memory problem for A* search?

Idea: Try something like iterative deeping search, but the
cutoff is f-cost (g+h) at each iteration, rather than depth first.

Two types of memory bounded heuristic searches:

Ø Recursive BFS

Ø SMA*

Jarrar © 2014 34

Recursive Best First Search (RBFS)

RBFS changes its mind very often
in practice.

This is because the f=g+h
become more accurate (less
optimistic) as we approach the
goal. Hence, higher level nodes
have smaller f-values and will be
explored first.

Problem? If we have more
memory we cannot make use of it.

Ay idea to improve this?

best alternative
over fringe nodes,
which are not children:
do I want to back up?

Jarrar © 2014 35

Simple Memory Bounded A* (SMA*)

• This is like A*, but when memory is full we delete the worst
node (largest f-value).

• Like RBFS, we remember the best descendent in the branch
we delete.

• If there is a tie (equal f-values) we first delete the oldest
nodes first.

• SMA* finds the optimal reachable solution given the memory
constraint.

• But time can still be exponential.

Jarrar © 2014 36

SMA* pseudocode

function SMA*(problem) returns a solution sequence
inputs: problem, a problem
static: Queue, a queue of nodes ordered by f-cost

Queueß MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
loop do

if Queue is empty then return failure
nß deepest least-f-cost node in Queue
if GOAL-TEST(n) then return success
sß NEXT-SUCCESSOR(n)
if s is not a goal and is at maximum depth then

f(s) ß ¥
else

f(s) ß MAX(f(n),g(s)+h(s))
if all of n’s successors have been generated then

update n’s f-cost and those of its ancestors if necessary
if SUCCESSORS(n) all in memory then remove n from Queue
if memory is full then

delete shallowest, highest-f-cost node in Queue
remove it from its parent’s successor list
insert its parent on Queue if necessary

insert s in Queue
end

Based on [2]

Jarrar © 2014 37

Simple Memory-bounded A* (SMA*)

SMA* is a shortest path algorithm based on the A* algorithm.

The advantage of SMA* is that it uses a bounded memory, while the A*
algorithm might need exponential memory.

All other characteristics of SMA* are inherited from A*.

How it works:
• Like A*, it expands the best leaf until memory is full.
• Drops the worst leaf node- the one with the highest f-value.
• Like RBFS, SMA* then backs up the value of the forgotten node to

its parent.

Jarrar © 2014 38

Simple Memory-bounded A* (SMA*)

24+0=24

A

B G

C D

E F

H

J

I

K

0+12=12

10+5=15

20+5=25

30+5=35

20+0=20

30+0=30

8+5=13

16+2=18

24+0=24 24+5=29

10 8

10 10

10 10

8 16

8 8

A
12

A

B

12

15

A

B G

13

15 13 H

13

¥

A

G

18

13[15]

A

G
24[¥]

I

15[15]

24

A

B G

15

15 24
¥

A

B

C

15[24]

15

25

f = g+h

(Example with 3-node memory)

A

B

D

8

20

20[24]

20[¥]

Progress of SMA*. Each node is labeled with its
current f-cost. Values in parentheses show the value of
the best forgotten descendant.

¥ is given to nodes that the path up to it uses all available memory.
Can tell when best solution found within memory constraint is optimal or not.

� = goal

Search space

Jarrar © 2014 39

The Algorithm proceeds as follows [3]

Jarrar © 2014 40

SMA* Properties [2]

• It works with a heuristic, just as A*

• It is complete if the allowed memory is high enough to store the
shallowest solution.

• It is optimal if the allowed memory is high enough to store the
shallowest optimal solution, otherwise it will return the best solution
that fits in the allowed memory.

• It avoids repeated states as long as the memory bound allows it

• It will use all memory available.

• Enlarging the memory bound of the algorithm will only speed up the
calculation.

• When enough memory is available to contain the entire search tree,
then calculation has an optimal speed

Jarrar © 2014 41

Admissible Heuristics

How can you invent a good admissible heuristic function?
E.g., for the 8-puzzle

Jarrar © 2014 42

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (i.e., no. of squares from

desired location of each tile)

h1(S) = ?
h2(S) = ?

Jarrar © 2014 43

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (i.e., no. of squares from

desired location of each tile)

h1(S) = 8
h2(S) = 3+1+2+2+2+3+3+2 = 18

Jarrar © 2014 44

Dominance

If h2(n) ≥ h1(n) for all n, and both are admissible.

then h2 dominates h1

h2 is better for search: it is guaranteed to expand less nodes.

Typical search costs (average number of nodes expanded):

d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

What to do If we have h1…hm, but none dominates the other?

èh(n) = max{h1(n), . . .hm(n)}

Jarrar © 2014 45

Relaxed Problems

A problem with fewer restrictions on the actions is called a
relaxed problem.

The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem.

If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h1(n) gives the shortest solution.

If the rules are relaxed so that a tile can move to any near
square, then h2(n) gives the shortest solution.

Jarrar © 2014 46

Admissible Heuristics

How can you invent a good admissible heuristic function?
ØTry to relax the problem, from which an optimal solution
can be found easily.
ØLearn from experience.

èCan machines invite an admissible heuristic automatically?

Jarrar © 2018 48

References

[1] S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach Prentice Hall, 2003,
Second Edition

[2] http://en.wikipedia.org/wiki/SMA*

[3] Moonis Ali: Lecture Notes on Artificial Intelligence
http://cs.txstate.edu/~ma04/files/CS5346/SMA%20search.pdf

[4] Max Welling: Lecture Notes on Artificial Intelligence
https://www.ics.uci.edu/~welling/teaching/ICS175winter12/A-starSearch.pdf

[5] Kathleen McKeown: Lecture Notes on Artificial Intelligence
http://www.cs.columbia.edu/~kathy/cs4701/documents/InformedSearch-AR-print.ppt

[6] Franz Kurfess: Lecture Notes on Artificial Intelligence
http://users.csc.calpoly.edu/~fkurfess/Courses/Artificial-Intelligence/F09/Slides/3-Search.ppt

http://en.wikipedia.org/wiki/SMA*
http://cs.txstate.edu/~ma04/files/CS5346/SMA%20search.pdf
https://www.ics.uci.edu/~welling/teaching/ICS175winter12/A-starSearch.pdf
http://www.cs.columbia.edu/~kathy/cs4701/documents/InformedSearch-AR-print.ppt
http://users.csc.calpoly.edu/~fkurfess/Courses/Artificial-Intelligence/F09/Slides/3-Search.ppt

