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Discussion and Motivation

How to determine the minimum number of coins to give while
making change?

è The coin of the highest value first ?
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Discussion and Motivation

Travel Salesperson Problem

• Any idea how to improve this type of search?
• What type of information we may use to improve our search?
• Do you think this idea is useful: (At each stage visit the unvisited city 

nearest to the current city)? 

Given a list of cities and their pair wise distances, the task is to find a
shortest possible tour that visits each city exactly once.
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Best-first search
Idea: use an evaluation function f(n) for each node

– family of search methods with various evaluation functions 
(estimate of "desirability“)

– usually gives an estimate of the distance to the goal
– often referred to as heuristics in this context
àExpand most desirable unexpanded node.
àA heuristic function ranks alternatives at each branching step 

based on the available information (heuristically) in order to 
make a decision about which branch to follow during a search.

Implementation:
Order the nodes in fringe in decreasing order of desirability.
Special cases:

– greedy best-first search
– A* search
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Romania with step costs in km

Suppose we can have this info (SLD)
è How can we use it to improve our search? 
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Greedy best-first search

• Greedy best-first search expands the node that appears

to be closest to goal.

• Estimate of cost from n to goal ,e.g., hSLD(n) = straight-line 

distance from n to Bucharest.

Utilizes a heuristic function as evaluation function

– f(n) = h(n) = estimated cost from the current node to a 

goal.

– Heuristic functions are problem-specific.

– Often straight-line distance for route-finding and similar 

problems.

– Often better than depth-first, although worst-time 

complexities are equal or worse (space).
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Greedy best-first search example Example from [1]
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search
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Properties of greedy best-first search

Complete: No – can get stuck in loops (e.g., Iasi à Neamt à Iasi à
Neamt à ….)

Time: O(bm), but a good heuristic can give significant improvement

Space: O(bm) -- keeps all nodes in memory

Optimal: No

b branching factor

m maximum depth of the 
search tree
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Discussion 

Do you think hSLD(n) is admissible?
Would you use hSLD(n) in Palestine? How? Why?

Did you find the Greedy idea useful? 

èIdeas to improve it?
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A* search
Idea: avoid expanding paths that are already expensive.

Evaluation function = path cost + estimated cost 
to the goal

f(n) = g(n) + h(n)
-g(n) = cost so far to reach n
-h(n) = estimated cost from n to goal

-f(n) = estimated total cost of path through n to goal

Combines greedy and uniform-cost search to find the 
(estimated) cheapest path through the current node

– Heuristics must be admissible

• Never overestimate the cost to reach the goal

– Very good search method, but with complexity problems
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A* search example Example from [1]
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A* search example
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A* search example
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A* search example
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A* search example
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A* search example
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A* Algorithm
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A* Exercise

How will A* get from Iasi to Fagaras?
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A* Exercise

Node Coordinates SL Distance
A (5,9) 8.0
B (3,8) 7.3
C (8,8) 7.6
D (5,7) 6.0
E (7,6) 5.4
F (4,5) 4.1
G (6,5) 4.1
H (3,3) 2.8
I (5,3) 2.0
J (7,2) 2.2
K (5,1) 0.0
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Solution to A* Exercise

Node Coordinates SL Distance
A (5,9) 8.0
B (3,8) 7.3
C (8,8) 7.6
D (5,7) 6.0
E (7,6) 5.4
F (4,5) 4.1
G (6,5) 4.1
H (3,3) 2.8
I (5,3) 2.0
J (7,2) 2.2
K (5,1) 0.0
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Greedy Best-First Exercise

Node Coordinates Distance
A (5,9) 8.0
B (3,8) 7.3
C (8,8) 7.6
D (5,7) 6.0
E (7,6) 5.4
F (4,5) 4.1
G (6,5) 4.1
H (3,3) 2.8
I (5,3) 2.0
J (7,2) 2.2
K (5,1) 0.0
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Solution to Greedy Best-First Exercise

Node Coordinates Distance
A (5,9) 8.0
B (3,8) 7.3
C (8,8) 7.6
D (5,7) 6.0
E (7,6) 5.4
F (4,5) 4.1
G (6,5) 4.1
H (3,3) 2.8
I (5,3) 2.0
J (7,2) 2.2
K (5,1) 0.0
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Another Exercise

Node    C            g(n) h(n)

A         (5,10)       0.0         8.0
B         (3,8)         2.8         6.3  
C         (7,8)         2.8 6.3
D         (2,6)         5.0         5.0
E         (5,6) 5.6         4.0
F         (6,7) 4.2 5.1
G        (8,6) 5.0 5.0
H        (1,4) 7.2 4.5
I          (3,4) 7.2 2.8
J          (7,3) 8.1 2.2
K         (8,4) 7.0 3.6
L         (5,2) 9.6 0.0

Do 1) A* Search and 2) Greedy Best-Fit Search
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Admissible Heuristics

A heuristic  h(n) is admissible if for every node n, h(n) ≤ h*(n), 
where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach 
the goal, i.e., it is optimistic.

The heuristic function hSLD(n) is admissible because it never 
overestimates the actual road distance)

Theorem-1: If h(n) is admissible, A* using TREE-SEARCH is 
optimal.

Based on [4]
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Optimality of A* (proof)

f(G2)  = g(G2) since h(G2) = 0 
g(G2) > g(G) since G2 is suboptimal 
f(G)   = g(G) since h(G) = 0 

Then  f(G2)  > f(G) from above 

h(n)   ≤ h*(n) since h is admissible
g(n) + h(n)  ≤ g(n) + h*(n) 

Then f(n)    ≤ f(G)              
Thus, A* will never select G2 for expansion 

Based on [4]

Recall that f(n) = g(n) + h(n)
Now, suppose some suboptimal goal G2 has been generated and is in the 
fringe. Let n be an unexpanded node in the fringe such that n is on a 
shortest path to an optimal goal G.
We want to prove:
f(n) < f(G2)

(then A* will prefer n over G2)

Start

n

G G2
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Optimality of A* (proof)

In other words:

f(G
2
) = g(G

2
) + h(G

2
) = g(G

2
) > C*, 

since G
2

is a goal on a non-optimal path (C* is the optimal cost)

f(n) = g(n) + h(n) ≤ C*, since h is admissible 

f(n) ≤ C* < f(G
2
), so G

2
will never be expanded

à A* will not expand goals on sub-optimal paths 

Recall that f(n) = g(n) + h(n)
Now, suppose some suboptimal goal G2 has been generated and is in the 

fringe. Let n be an unexpanded node in the fringe such that n is on a 

shortest path to an optimal goal G.

We want to prove:
f(n) < f(G2)

(then A* will prefer n over G2)

Start

n

G G2



Jarrar © 2014 32

Properties of A*

• Complete: Yes 
unless there are infinitely many nodes with f ≤ f(G)

• Time: Exponential
because all nodes such that f(n) ≤ C* are expanded!

• Space: Keeps all nodes in memory
fringe is exponentially large

• Optimal: Yes
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Memory Bounded Heuristic Search

How can we solve the memory problem for A* search?

Idea: Try something like iterative deeping search, but the 
cutoff is f-cost (g+h) at each iteration, rather than depth first.

Two types of memory bounded heuristic searches:

Ø Recursive BFS

Ø SMA*
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Recursive Best First Search (RBFS)

RBFS changes its mind very often 
in practice.

This is because the  f=g+h
become more accurate (less 
optimistic) as we approach the 
goal. Hence, higher level nodes 
have smaller f-values and will be 
explored first.

Problem? If we have more 
memory we cannot make use of it.

Ay idea to improve this?

best alternative
over fringe nodes,
which are not children:
do I want to back up?
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Simple Memory Bounded A*  (SMA*)

• This is like A*, but when memory is full we delete the worst 
node (largest f-value).

• Like RBFS, we remember the best descendent in the branch 
we delete.

• If there is a tie (equal f-values) we first delete the oldest 
nodes first.

• SMA* finds the optimal reachable solution given the memory 
constraint.

• But time can still be exponential. 
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SMA* pseudocode

function SMA*(problem) returns a solution sequence
inputs: problem, a problem
static: Queue, a queue of nodes ordered by f-cost

Queueß MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
loop do

if Queue is empty then return failure
nß deepest least-f-cost node in Queue
if GOAL-TEST(n) then return success
sß NEXT-SUCCESSOR(n)
if s is not a goal and is at maximum depth then

f(s) ß ¥
else

f(s) ß MAX(f(n),g(s)+h(s))
if all of n’s successors have been generated then

update n’s f-cost and those of its ancestors if necessary
if SUCCESSORS(n) all in memory then remove n from Queue
if memory is full then

delete shallowest, highest-f-cost node in Queue
remove it from its parent’s successor list
insert its parent on Queue if necessary

insert s in Queue
end

Based on [2]
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Simple Memory-bounded A* (SMA*)

SMA* is a shortest path algorithm based on the A* algorithm. 

The advantage of SMA* is that it uses a bounded memory, while the A* 
algorithm might need exponential memory.

All other characteristics of SMA* are inherited from A*.

How it works:
• Like A*, it expands the best leaf until memory is full. 
• Drops the worst leaf node- the one with the highest f-value. 
• Like RBFS, SMA* then backs up the value of the forgotten node to 

its parent.
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Simple Memory-bounded A* (SMA*)
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Progress of SMA*.  Each node is labeled with its 
current f-cost.  Values in parentheses show the value of 
the best forgotten descendant.

¥ is given to nodes that the path up to it uses all available memory.
Can tell when best solution found within memory constraint is optimal or not.

� = goal

Search space
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The Algorithm proceeds as follows [3]
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SMA* Properties [2]

• It works with a heuristic, just as A*

• It is complete if the allowed memory is high enough to store the 
shallowest solution.

• It is optimal if the allowed memory is high enough to store the 
shallowest optimal solution, otherwise it will return the best solution 
that fits in the allowed memory.

• It avoids repeated states as long as the memory bound allows it

• It will use all memory available.

• Enlarging the memory bound of the algorithm will only speed up the 
calculation.

• When enough memory is available to contain the entire search tree, 
then calculation has an optimal speed
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Admissible Heuristics

How can you invent a good admissible heuristic function?
E.g., for the 8-puzzle
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Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (i.e., no. of squares from 

desired location of each tile)

h1(S) = ? 
h2(S) = ?
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Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (i.e., no. of squares from 

desired location of each tile)

h1(S) = 8
h2(S) = 3+1+2+2+2+3+3+2 = 18 
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Dominance

If h2(n) ≥ h1(n) for all n, and both are admissible.

then h2 dominates h1

h2 is better for search: it is guaranteed to expand less nodes.

Typical search costs (average number of nodes expanded):

d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes 
A*(h2) = 73 nodes 

d=24 IDS = too many nodes
A*(h1) = 39,135 nodes 
A*(h2) = 1,641 nodes 

What to do If we have h1…hm, but none dominates the other?

èh(n) = max{h1(n), . . .hm(n)}
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Relaxed Problems

A problem with fewer restrictions on the actions is called a 
relaxed problem.

The cost of an optimal solution to a relaxed problem is an 
admissible heuristic for the original problem.

If the rules of the 8-puzzle are relaxed so that a tile can 
move anywhere, then h1(n) gives the shortest solution.

If the rules are relaxed so that a tile can move to any near 
square, then h2(n) gives the shortest solution.
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Admissible Heuristics

How can you invent a good admissible heuristic function?
ØTry to relax the problem, from which an optimal solution 
can be found easily.
ØLearn from experience. 

èCan machines invite an admissible heuristic automatically?
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